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A Basic Fluid-Structure Interaction (FSI) Problem

Fluid Ωf
t

Structure Ωs

Interface γt

Fluid (Navier–Stokes) and structure (linear elasticity) in contact over
an interface

ρf

(
∂u

∂t
+ u · ∇u

)
− 2νf ∇ · D(u) +∇p = ff in Ωf

t

∇ · u = 0 in Ωf
t

ρs
∂2η

∂t2
−∇ · σs = fs in Ωs

Continuity of velocity: u = η̇ on γt

Continuity of traction force: σf · nf = −σs · ns on γt

where D(v) := (∇v +∇vT )/2 and (σs)ij := 2µD(η)ij + λD(η)kkδij

,
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Challenges of Solving FSI Problems

Fluid Ωf
t

Structure Ωs

Interface γt

Solution of FSI problems is challenging because of:

nonlinear mathematical models

strong coupling between constituent model components

moving domain, which require mesh update and/or reassembly

shape of the fluid domain is part of the solution

,
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Description of the Optimization Problem

Fluid, Structure

ρf

[(
∂u

∂t
, v

)
Ωf

+ (u · ∇u, v)

]
+ (σf ,∇v)Ωf − (p,∇ · v)Ωf

= (ff , v)Ωf + (σf · nf , v)γt

(∇ · u, q)Ωf = 0

ρs

(
∂2η

∂t2
, ξ

)
Ωs

+ (σs ,∇ξ)Ωs = (fs , ξ)Ωs + (σs · ns , ξ)γt

Use σf · nf = −σs · ns to replace (σf · nf , v)γt with (g, v)γt and
(σs · ns , ξ)γt with −(g, ξ)γt , i.e., unknown traction force as a control.

Find a gn that minimizes the functional

J δn (un, pn,ηn, η̇n, gn) =
1

2

∫
γn

|un − V(η̇n)|2 dγn +
δ

2

∫
γn

|gn|2 dγn ,

subject to the flow and structure constraint equations.

,
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An Optimization-Based FSI Approach

Use optimization techniques to find an optimal g that satisfies
continuity of velocity to within some desired tolerance

Solve adjoint equations to use steepest descent method
OR solve linearized (and possibly adjoint) equations to use
Gauss-Newton + BICGSTAB/CGLES/GMRES

Optimizer

Fluid
Adjoint

Structure
Adjoint

g
Fluid

Structure

,
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Arbitrary Lagrangian–Eulerian (ALE)

Allows for formulation of the fluid on a moving domain

Introduces a mesh that moves in time and space

Ψt is the time-dependent bijective mapping which maps the reference
domain Ω0 to the physical domain Ωt :

Ω

Ψt

Ψt

Ω t-1

Ψt : Ω0 → Ωt , Ψt(x̂) = x(x̂, t) ,

where x̂ and x are the spatial coordinates in Ω0 and Ωt , respectively.
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Variational Formulation of the Fluid Governing Equations

Using the Reynold’s Transport theorem

d

dt

∫
Ωt

φv dΩ =

∫
Ωt

(
∂φ

∂t
|x̂ +φ∇x · z

)
v dΩ,

with φ = u, the chain rule, and integration by parts, the variational
formulation of the flow equations becomes:

ρf
d

dt
(u, v)Ωf

t
+ ρf ((u− z) · ∇u, v)Ωf

t
− ρf (u(∇ · z), v)Ωf

t
+ 2νf (D(u),D(v))Ωf

t

− (p,∇ · v)Ωf
t
− (2νfD(u) · nf − pnf , v)γt

= (ff , v)Ωf
t
∀v ∈ H1

D(Ωf
t ) ,

(q,∇ · u)Ωf
t

= 0 ∀q ∈ L2(Ωf
t ) ,

where z is the mesh velocity, z = dΨt

dt ≈
Ψn−Ψn−1

∆t .
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Time Discretization of the Flow Equations

Time discretization by implicit Euler yields

ρf

∆t

[
(un, v)

Ωf
n
−(un−1

,V(v))
Ωf
n−1

]
+ ρf

[
((un − zn) · ∇un, v)

Ωf
n
− (un(∇ · zn), v)

Ωf
n

]
+ 2νf (D(un),D(v))

Ωf
n
− (pn

,∇ · v)
Ωf
n

−
(

2νf D(un) · nf − pnnf , v
)
γt

= (fnf , v)
Ωf
n
∀v ∈ H1

D (Ωf
n) ,

(q,∇ · un)
Ωf
n

= 0 ∀q ∈ L2(Ωf
n) .

It is expected that the overall order of the time discretization (fluid
and structure) will be only first order.

Second order time scheme of the structure will be used for analysis
because of extra accuracy needed.
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Second Order Time Discretization of the Structure

A second order time discretization of the structure problem is
ρs

∆t
(η̇n −η̇n−1, ξ

)
Ωs

+ 2 µ

(
D(ηn) + D(ηn−1)

2
,D(ξ)

)
Ωs

+ λ

(
∇ ·
(
ηn + ηn−1

2

)
,∇ · ξ

)
Ωs

−
(

2 µ

(
(D(ηn) + D(ηn−1)) · ns

2

)
+ λ

(
∇ ·
(
ηn + ηn−1

2

))
ns , ξ

)
γ0

=

(
fns + fn−1

s

2
, ξ

)
Ωs

∀ξ ∈ H1
D(Ωs) ,

(
η̇n + η̇n−1

2
,γ

)
Ωs

−
(
ηn − ηn−1

∆t
,γ

)
Ωs

= 0 ∀γ ∈ L2(Ωs) .
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Optimization Constraints

Set gn :=
(
2νf D(un) · nf − pnf − 1

2
((un − zn) · nf )un

)
|γn as our control

1
2

((un − z) · nf )un will be approximately zero since at an optimal solution −gn
can be used as the stress for the structure

−(gn ◦Ψ−1
n )Jn representing (2µD(ηn) · ns + λ(∇ · ηn)ns) |It0

Making this substitution and introducing c(u, v,w) = 1
2

((u∇v,w)Ωf
n
− (u∇w, v)Ωf

n
),

the flow constraints become

ρf

∆t
[(un, v)

Ωf
n
− (un−1

,V(v))
Ωf
n−1

] + ρ
f [c(un, un, v)

Ωf
n

+
1

2
((un · nf )un, v)

Γf
N

−
1

2
((∇ · zn)un, v)

Ωf
n
− c(zn, un, v)

Ωf
n

]

+ 2νf (D(un),D(v))
Ωf
n

+ (pn
,∇ · v)

Ωf
n

= (fnf , v)
Ωf
n

+ (gn, v)γn ∀v ∈ H1
D (Ωf

n),

(q,∇ · un)
Ωf
n

= 0 q ∈ L2(Ωf
n).

,
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Optimization Constraints

Also, the structure equations constraint can be rewritten as
ρs

∆t
(η̇n −η̇n−1, ξ

)
Ωs

+ 2 µ

(
D(ηn) + D(ηn−1)

2
,D(ξ)

)
Ωs

+ λ

(
∇ ·
(
ηn + ηn−1

2

)
,∇ · ξ

)
Ωs

=

(
fns + fn−1

s

2
, ξ

)
Ωs

−
(
V(gn)Jn + V(gn−1)Jn−1

2
, ξ

)
γ0

∀ξ ∈ H1
D(Ωs),

(
η̇n + η̇n−1

2
,γ

)
Ωs

−
(
ηn − ηn−1

∆t
,γ

)
Ωs

= 0 ∀γ ∈ L2(Ωs) .
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A New Functional

Expected difficulties:

Not possible to get a stability estimate for η̇n in H1(Ωs)

An optimal ˆ̇ηn can be shown only in L2(Ωs)

The previous functionals are not well-defined (trace of optimal η̇n is
not well-defined)

We introduce a first order finite difference approximation of η̇n, and
define the new optimization problem as

J δn (un, pn,ηn, η̇n, ¯̇ηn, gn) =
1

2

∫
γn

∣∣∣∣un − V(ηn)− V(ηn−1)

∆t

∣∣∣∣2 dγn

+
δ

2

∫
γn

|gn|2 dγn ,

subject to the flow and structure constraints.
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Penalized Functional as Norm of Nonlinear Function

Define the nonlinear operator Nn : L2(γn)→ L2(γn)× L2(γn) by

Nn(gn) =

(
(un − η̇n ◦Ψ−1

n ) |γn√
ε gn

)
,

where un, η̇n are the fluid and structure velocities when gn is the stress
function on the interface. Then, the functional can be written as

Jn(gn) =
1

2
‖Nn(gn)‖2

L2(γn)×L2(γn)

and the nonlinear least squares problem we consider is to

seek gn ∈ L2(γn) such that Jn(gn) is minimized.

,
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Linearization of Nonlinear Function

We can linearize Nn(gn) using the Fréchet derivative of Nn(·) at gn,
N ′n(gn), by

Nn(g) = Nn(gn) + N ′(gn)(gn − gn) + O(‖gn − gn‖2
L2(γn)×L2(γn))

so that solutions of the nonlinear least squares problem can be obtained
by repeatedly solving the linear least squares problem

min
hn∈L2(γn)

1

2
‖N(gn) + N ′n(gn)hn‖2

L2(γn)×L2(γn) ,

where hn = gn − gn. Hence, starting with arbitrary gn
(0), we can find a

sequence {gn
(k)} obtained by gn

(k) = gn
(k−1) + hn(k), where hn(k) is a solution

of the linear least squares problem.

,
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Gauss-Newton Algorithm

Algorithm (Gauss-Newton)

1. Choose gn
(0).

2. For k = 1, 2, 3, . . .,

a. computable in parallel:

i. find un
(k)

and pn
(k)

on Ωf
n,(k−1) using zn

(k−1)
and gn

(k−1)
,

ii. find ηn
(k)

and η̇n
(k) using gn

(k−1)
,

b. update γn(k) , zn(k), Ψ
(k)
n , and Ωf

n,(k) using ηn
(k),

c. if 1
2

∫
γ
n(k−1)

|un − η̇n ◦ (Ψ
(k−1)
n )−1|2 dγ < εtol , break,

d. compute hn
(k) by CGLES, or in some other way solve the least squares

problem with A = N ′n(gn
(k−1)), b = −Nn(gn

(k−1)), and x = hn
(k),

e. set gn
(k) = gn

(k−1) + hn
(k).

,
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Haemodynamic Experiment

uN = 0

uD = 0

Ωs = [0, 6]× [1, 1.1] ηD = 0ηD = 0

ηN = 0

uN = b(t)
ΓI0

Ωf
0 = [0, 6]× [0, 1]

b(t) =

{
(−103(1− cos 2πt

.025 ), 0) dyne/cm2
, t ≤ 0.025

(0, 0), 0.025 < t < T .

ρf = 1 g/cm3, νf = 0.035 g/cm·s.

ρs = 1.1 g/cm3, E = 3× 106 dyne/cm2, ν = 0.3. The Lamé-Navier
parameters λ and µ are defined as follows:

λ =
νE

(1− 2ν)(1 + ν)
dyne/cm2

, µ =
E

2(1 + ν)
dyne/cm2

.

� C.M. Murea, S. Sy, A fast method for solving fluid-structure interaction problems numerically, International Journal for Numerical
Methods in Fluids. 60 (2009) 1149-1172.

,
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Comparison with Aitken’s Relaxation
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Figure: Vertical displacement at three points on the interface using first (1)
and second (2) order formulations with the optimal control algorithm beside
vertical displacement using Aitken’s relaxation (3)

Spatial discretization horizontally: 0.2 cm
Spatial discretization vertically: 0.1 cm
Temporal discretization: ∆t=1e-4 s, T=0.1 s
Aitken’s stopping tolerance: 1e-7
Optimization stopping tolerance: 1e-4
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Comparison of Linear vs. Nonlinear Elasticity
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Figure: Vertical displacement at three points on the interface using (1)
optimization and (2) Aitken’s relaxation with the St. Venant–Kirchhoff
constitutive equation and (3) optimization and (4) Aitken’s relaxation with the
linear elastic constitutive equation.

Spatial discretization horizontally: 0.2 cm
Spatial discretization vertically: 0.1 cm
Temporal discretization: ∆t=1e-4 s, T=0.1 s
Aitken’s stopping tolerance: 1e-7
Optimization stopping tolerance: 1e-4
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3D Pulsatile Flow with Nonlinear Elastic

Navier–Stokes fluid, µ = 0.035 poise, ρf = 1 g/cm3,
straight vessel of radius 0.5 cm and length 5 cm

St. Venant–Kirchhoff structure, ρs = 1.2 g/cm3, E = 3.0e + 6
dynes/cm2, ν = 0.3, surrounding structure thickness of 0.1 cm

Overpressure on inlet boundary of 1.3332e+4 dynes/cm2 for
t ∈ [0, .005] s, inlet and outlet boundaries clamped

∆t =1e-4 s

� E. Burman, M.A. Fernández, Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility,
Computer Methods in Applied Mechanics and Engineering. 198 (2009) 766-784.
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3D Pulsatile Flow Computational Effort

Refinement h DOFs Gauss-Newton
Iterations

GMRES /
Gauss-Newton

Fluid Solves
(Total)

Fluid Solves
(Stress Determined) Work Factor

1 5/12 3975 3807 11.54 14302 2570 8.53
2 5/24 17983 4472 15.39 16608 2473 10.33
3 5/48 128790 5185 24.84 20006 2791 10.88

Work Factor = Fluid Solves (Total) + 2 Gauss-Newton Iterations
Fluid Solves (Stress Determined)

Even without preconditioning, the cost of optimization does not
grow significantly with DOFs

,
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Significance of these Results

Very few outer optimization iterations are performed per timestep
(3-5 generally)

The assembled matrix does not change between inner optimization
iterations

We can reuse the matrix factorization over all linear optimization
iterations!

We can solve the coupled FSI problem in a constant multiple of
the computational effort needed to solve the forward problems, had
the correct boundary condition been known

We use partitioned solvers, so the forward solves are cheap in
comparison to a monolithic approach

,
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Completed Research

Navier–Stokes / Linear Elasticity

Recast FSI problem as a constrained minimization of the velocity
mismatch

Proved the existence of an optimal solution

Proved the existence of Lagrange multipliers

Applied Brezzi-Rappaz-Raviart (BRR) theory to prove convergence
rates over a single time step

Proved convergence of steepest descent algorithm

Demonstrated theoretical rate of convergence via computation for
fixed domain over a single time step

Navier–Stokes / St. Venant–Kirchhoff

Derived linearization of St. Venant–Kirchhoff constitutive equation

Executed computational complexity experiments on 3D flow through
a cylinder

,
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